
ELAN DIGITAL SYSTEMS LTD.
LITTLE PARK FARM ROAD,

SEGENSWORTH WEST,
FAREHAM,

HANTS. PO15 5SJ.
TEL: (44) (0)1489 579799
FAX: (44) (0)1489 577516

e-mail: support@pccard.co.uk
website: http://www.pccard.co.uk

USBscope50

 SDK User’s Guide
(Software Development Kit)

ES378

Important Notice: Please refer to ES370 “USBscope50 User’s Guide” for safety

notices for the USBscope50
All Trademarks are duly acknowledged.

The USBscope50 is Patent Pending.

REVISION HISTORY

Elan Digital Systems Ltd. 1 USBscope50 SDK Iss2

ISSUE PAGES DATE NOTES
1 55 31.10.2005 FIRST ISSUE
2 59 15.12.2005 RIS Modes Added

http://www.pccard.co.uk/

CONTENTS

1 OVERVIEW.. 5

2 THE USB INTERFACE.. 6

2.1 USB Device Drivers .. 6
2.1.1 Windows 2000, XP .. 6
2.1.2 Windows 98SE, ME... 7

2.2 Digital Signing... 7

3 THE DRIVER INTERFACE.. 8

3.1 Overview.. 8

3.2 Terminology .. 8

3.3 Driver Functions ... 9
3.3.1 USBscope50Drvr_OpenDrvr... 10
3.3.2 USBscope50Drvr_CloseDrvr .. 11
3.3.3 USBscope50Drvr_DrvrIss ... 12
3.3.4 USBscope50Drvr_Enumerate.. 13
3.3.5 USBscope50Drvr_GetProductName ... 14
3.3.6 USBscope50Drvr_GetSerialNumber... 15
3.3.7 USBscope50Drvr_GetHWRev .. 16
3.3.8 USBscope50Drvr_GetPortNumber.. 17
3.3.9 USBscope50Drvr_GetControllerRev .. 18
3.3.10 USBscope50Drvr_OpenAndReset ... 19
3.3.11 USBscope50Drvr_PortOpen .. 20
3.3.12 USBscope50Drvr_Close... 21
3.3.13 USBscope50Drvr_InitScope .. 22
3.3.14 USBscope50Drvr_SetDetectLine... 23
3.3.15 USBscope50Drvr_GetDetectLine .. 24
3.3.16 USBscope50Drvr_ SetBaseAdcClk ... 25
3.3.17 USBscope50Drvr_GetBaseAdcClk.. 26
3.3.18 USBscope50Drvr_SetDecimationRatio ... 27
3.3.19 USBscope50Drvr_GetSamplePeriod.. 29
3.3.20 USBscope50Drvr_GetSampleDepth .. 30
3.3.21 USBscope50Drvr_SetUpFrontEnd... 31
3.3.22 USBscope50Drvr_SetOffset... 32
3.3.23 USBscope50Drvr_SetTrigMaster... 33
3.3.24 USBscope50Drvr_GetTrigMaster .. 34
3.3.25 USBscope50Drvr_SetTrigType.. 35
3.3.26 USBscope50Drvr_SetNormTrig .. 36
3.3.27 USBscope50Drvr_SetTrigThreshold.. 37
3.3.28 USBscope50Drvr_GetTriggeredStatus .. 38
3.3.29 USBscope50Drvr_SetPreTrigDepth... 39
3.3.30 USBscope50Drvr_SetTriggerDelay ... 40
3.3.31 USBscope50Drvr_AcquisitionStart ... 41

Elan Digital Systems Ltd. 2 USBscope50 SDK Iss2

3.3.32 USBscope50Drvr_AcquisitionEnd... 42
3.3.33 USBscope50Drvr_GetAcquisitionState ... 43
3.3.34 USBscope50Drvr_GetBufferBlocks .. 44
3.3.35 USBscope50Drvr_GetBufferBlocksMultiChan 45
3.3.36 USBscope50Drvr_GetBufferRIS ... 46
3.3.37 USBscope50Drvr_GetSamplesSinceTrigger.. 47
3.3.38 USBscope50Drvr_GetBufferIncremental .. 48
3.3.39 USBscope50Drvr_SetCalSource .. 49
3.3.40 USBscope50Drvr_SetLEDMode.. 50
3.3.41 USBscope50Drvr_FFT... 51
3.3.42 USBscope50Drvr_ReScaleSampleData ... 52

4 RIS MODE ... 53

4.1 Overview.. 53

4.2 Principals of Operation.. 53

4.3 Organising the Data.. 54

5 GENERAL PROGRAMMING CONSIDERATIONS 56

5.1 Saved Scope Settings .. 56

5.2 Leaving Ports Open.. 56

6 EXAMPLE CODE & HEADER FILES.. 57

6.1 Visual Basic6 ... 57

6.2 C/C++... 59

Elan Digital Systems Ltd. 3 USBscope50 SDK Iss2

Disclaimer

This document has been carefully prepared and checked. No responsibility can be
assumed for inaccuracies. Elan reserves the right to make changes without prior notice
to any products herein to improve functionality, reliability or other design aspects. Elan
does not assume any liability for loses arising out of the use of any product described
herein; neither does its use convey any license under its patent rights or the rights of
others. Elan does not guarantee the compatibility or fitness for purpose of any product
listed herein. Elan products are not authorized for use as components in life support
services or systems. Elan should be informed of any such intended use to determine
suitability of the products.

Software supplied with Elan PC-Cards, Compact Flash cards or USB devices is
provided “as-is” with no warranty, express or implied, as to its quality or fitness for a
particular purpose. Elan assumes no liability for any direct or indirect losses arising
from use of the supplied code.

Copyright © 2005 Elan Digital Systems Ltd.

Elan Digital Systems Ltd. 4 USBscope50 SDK Iss2

1 OVERVIEW

The Software Development Kit for the USBscope50 is an optional
component that will allow 3rd party developers to write their own
front end GUIs or device drivers.

The SDK contains the following items:

• SDK Manual (this document)
• USBscope50Drvr_W32.DLL driver library
• Interface header files for C/C++ and VB6
• Source code examples in C and VB6 to demonstrate use of the

library
• Kernel drivers and INF files to support the USBscope50’s

USB interface chip

Elan Digital Systems Ltd. 5 USBscope50 SDK Iss2

2 THE USB INTERFACE

2.1 USB Device Drivers

The USBscope50 uses a Silicon Labs USB interface device as its
primary means of communication with the host. The exact details of
the interface are not important and will not be elaborated here.
However, for a 3rd party distribution it is necessary to be able to
install the Silabs drivers on the target PC.

The file set used depends on the target Operating System.

The USBscope50 is configured to report the Silabs vendor ID: 10C4
The USBscope50 reports a product ID: F001
The USBscope50 reports a product string: USBscope50

2.1.1 Windows 2000, XP

FILE DESTINATION

(same file name unless stated)
COMMENTS

slabw2k.inf windows\inf
slabbus.inf windows\inf

slabunin2k.exe windows\system32\drivers
slabunin.u2k windows\system32\drivers

slabbus.sys windows\system32\drivers

slabcmnt.sys windows\system32\drivers
slabcmnt.sys windows\system32\drivers\slabcm.sys rename on copy

slabcr.sys windows\system32\drivers
slabser.sys windows\system32\drivers

slabwhnt.sys windows\system32\drivers
slabwhnt.sys windows\system32\drivers\slabwh.sys rename on copy

cp210xman.dll application folder

Elan Digital Systems Ltd. 6 USBscope50 SDK Iss2

2.1.2 Windows 98SE, ME

FILE DESTINATION

(same file name unless stated)
COMMENTS

slabvxd.inf windows\inf
slabwdm.inf windows\inf
slabbus.inf windows\inf

slabunin.exe windows\system

slabuninME.exe windows\system
slabunin.u98 windows\system

slabbus.sys windows\system

slabcm95.sys windows\system
slabcm95.sys windows\system\slabcm.sys rename on copy

slabcr.sys windows\system
slabser.sys windows\system

slabwh95.sys windows\system
slabwh95.sys windows\system\slabwh.sys rename on copy

slabcomm.vxd windows\system

slabvcd.vxd windows\system
slabvcr.vxd windows\system

cp210xman.dll application folder

2.2 Digital Signing

The INF files used by the USBscope50 are adapted from the original
Silabs distribution and have not been digitally signed. During
installation in 2K and XP, the user must confirm that he wishes to
proceed with the installation because the drivers are not signed.

Elan Digital Systems Ltd. 7 USBscope50 SDK Iss2

3 THE DRIVER INTERFACE

3.1 Overview

The function calls needed to control the USBscope50 are contained
in the USBscope50Drvr_W32.DLL module.

These sections will detail the calls available.

3.2 Terminology

A “device” will refer to an attached USB device i.e. a USBscope50.

A “channel” is the logical channel number to which a scope is
assigned1. Channels run from 1 upwards.

“byte” is an unsigned 8-bit integer value
“int” is a signed 32-bit integer value
“float” is a 4-byte IEEE floating point single precision value
“double” is an 8-byte IEEE floating point double precision value
“stringNNN” is a Unicode string of length NNN characters
“handle” is a signed 32-bit integer value

For function parameters, the term “input” refers to a value passed
into the driver (ByVal in VB terms), “return” refers to the return
value from a function call and “inout” refers to a variable address
reference (ByRef in VB terms or type* in C terms). The “alias”
section defines the call name in the DLL.

The order listed for parameters is the correct order for the function.

All functions are exported from the library as

“extern "C" _declspec(dllexport)”

This convention will link directly with VB, and will also link to C.
Note that the __sdtcall modifier must be used when declaring the C
functions. See 6.2 for ready-to-use headers & modules.

1 Also the order in which they are listed/found in the registry, which is alphabetically sorted…so all
USBscope50’s will be together in the registry and ordered by their serial numbers.

Elan Digital Systems Ltd. 8 USBscope50 SDK Iss2

3.3 Driver Functions

Elan Digital Systems Ltd. 9 USBscope50 SDK Iss2

3.3.1 USBscope50Drvr_OpenDrvr

input: none
return: handle (0=fail, non zero=success)

alias: _USBscope50Drvr_OpenDrvr@0

This function prepares the driver module for use. It must be called
once at the start of your program and before any other calls to the
driver are made. During this call the cp210xman.dll support DLL is
opened. This is used to recover information about the devices
attached.

On success, the driver is ready to call. On failure, no calls should be
made to the library and an exit strategy is required in your
application (most likely the support DLL is missing).

Elan Digital Systems Ltd. 10 USBscope50 SDK Iss2

3.3.2 USBscope50Drvr_CloseDrvr

input: handle (as returned from OpenDrvr call)
return: none

alias: _USBscope50Drvr_CloseDrvr@4

This function closes the driver module. It must be called only once
at the end of your program. During this call the cp210xman.dll
support DLL is released. Once you have closed the driver, you
cannot make calls to its API functions.

Elan Digital Systems Ltd. 11 USBscope50 SDK Iss2

3.3.3 USBscope50Drvr_DrvrIss

inout: string100 (returns driver issue info)
return: none

alias: _USBscope50Drvr_DrvrIss@4

This function copies a string description of the Driver’s name and
issue into the variable. The format is as follows:

“Name: USBscope50Drvr_W32 Ver: 1, 0, 0, 1”

In VB, the StrConv(s,vbFromUnicode) function can be used to turn
the Unicode string into a VB string.

Elan Digital Systems Ltd. 12 USBscope50 SDK Iss2

3.3.4 USBscope50Drvr_Enumerate

inout: int (forceport)
inout: int (forcechan)
return: int (number of devices found)

alias: _USBscope50Drvr_Enumerate@8

This function is used to discover any attached USBscope50 devices.
The driver holds an internal array of device information, indexed
from 1 to “number found” that can be queried later by the
application. This index number is used to refer to a specific scope
for almost all of the other driver calls and is referred to as a channel
number.

The two parameters should be set to 0 under normal conditions.
Then the return value will be the number of devices found.

If a particular channel and port number are required to force
operation with just one scope (to support MIS mode…see ES370
“USBscope50 User’s Guide” for details) they can be passed into
this function. The forced port is the COM port number assigned to
the particular device (as found from Windows Device Manager) and
the forced channel is an “arbitrary” channel number from 1 to 4. If
this mode is used, the return value will be 1 if the forced setting was
applied and the two parameters will hold their original values. If the
forced setting was not applied, the two parameters are set to –1 and
the number of devices found in total will be returned (and no forced
setting will be in operation). The latter can only happen if an invalid
port is requested.

Elan Digital Systems Ltd. 13 USBscope50 SDK Iss2

3.3.5 USBscope50Drvr_GetProductName

in: int (channel)
inout: byte (name)
inout: int (length)
return: int (0=fail, non zero=success)

alias: _USBscope50Drvr_GetProductName@12

This function returns an asciiz byte array containing the name of one
of the devices reported from the Enumerate call. It is used to check
each device found to make sure it is a USBscope50.

channel can range from 1 to “devices found”.
name will contain the product name on success or null on failure.
The byte array passed in should be capable of receiving up to 100
bytes plus the asciiz null.
The length returned defines the overall length of the name returned
not including the asciiz null at the end.

In VB, you advised to use the following structure:

Dim temparray(0 To 100) As Byte
Dim length As Long

USBscope50Drvr_GetProductName 1, temparray(0), length

Elan Digital Systems Ltd. 14 USBscope50 SDK Iss2

3.3.6 USBscope50Drvr_GetSerialNumber

in: int (channel)
inout: byte (serial)
inout: int (length)
return: int (0=fail, non zero=success)

alias: _USBscope50Drvr_GetSerialNumber@12

This function returns an asciiz byte array containing the serial
number of one of the devices reported from the Enumerate call.

channel can range from 1 to “devices found”.
serial will contain the product serial number on success or null on
failure. The byte array passed in should be capable of receiving up
to 100 bytes plus the asciiz null.
The length returned defines the overall length of the serial number
returned not including the asciiz null at the end.

Elan Digital Systems Ltd. 15 USBscope50 SDK Iss2

3.3.7 USBscope50Drvr_GetHWRev

in: int (channel)
inout: int (rev)
return: int (0=fail, non zero=success)

alias: _USBscope50Drvr_GetHWRev@8

This function returns the hardware revision of one of the devices
reported from the Enumerate call.

channel can range from 1 to “devices found”.
rev will contain the product hardware revision on success or -1 on
failure.

As an example, a rev 1.02 scope would return 0x0102 (hex)

Elan Digital Systems Ltd. 16 USBscope50 SDK Iss2

3.3.8 USBscope50Drvr_GetPortNumber

in: int (channel)
inout: int (port)
return: int (0=fail, non zero=success)

alias: _USBscope50Drvr_GetPortNumber@8

This function returns the COM port number allocated by the O.S. to
one of the devices reported from the Enumerate call.

channel can range from 1 to “devices found”.
port will contain the COM port number for the channel.

Port numbers are only used for information; driver calls refer to a
channel number rather than a COM port number.

Elan Digital Systems Ltd. 17 USBscope50 SDK Iss2

3.3.9 USBscope50Drvr_GetControllerRev

in: int (channel)
inout: int (rev)
return: int (0=fail, non zero=success)

alias: _USBscope50Drvr_GetControllerRev@8

This function returns the internal scope controller revision for one of
the devices reported from the Enumerate call.

channel can range from 1 to “devices found”.
rev will contain the controller revision. For example 0x22 (hex)

Elan Digital Systems Ltd. 18 USBscope50 SDK Iss2

3.3.10 USBscope50Drvr_OpenAndReset

in: int (channel)
return: int (0=fail, non zero=success)

alias: _USBscope50Drvr_OpenAndReset@4

This function opens the COM port associated with a channel,
initialises the channel and leaves it ready for the application to
initialised and configured as required.

The call can fail if the COM port cannot be opened for any reason.

channel can range from 1 to “devices found”.

Elan Digital Systems Ltd. 19 USBscope50 SDK Iss2

3.3.11 USBscope50Drvr_PortOpen

in: int (channel)
return: int (0=closed, 1=opened)

alias: _USBscope50Drvr_PortOpen@4

This function returns the state of the port associated with a channel.
The port will return closed until the OpenAndReset function is
called.

channel can range from 1 to “devices found”.

Elan Digital Systems Ltd. 20 USBscope50 SDK Iss2

3.3.12 USBscope50Drvr_Close

in: int (channel)
return: int (0=closed, 1=opened)

alias: _USBscope50Drvr_Close@4

This function closes the port associated with a channel. It should be
used at the end of your application to cleanly terminate each channel
that was previously opened using OpenAndReset.

channel can range from 1 to “devices found”.

Elan Digital Systems Ltd. 21 USBscope50 SDK Iss2

3.3.13 USBscope50Drvr_InitScope

in: int (channel)
in: int (master)
return: none

alias: _USBscope50Drvr_InitScope@8

This function performs critical hardware initialisation of a scope
ready for it to be used by an application. It performs an initial set up
and does some internal calibration and trimming operations. A stack
validation process2 is advised prior initialising the scopes.

channel can range from 1 to “devices found”.
master can be 0 for a “slave” scope or non-zero for a “master”
scope. If you are using just one scope, then set master to “1”. If you
have detected more than one scope, you must check the stack is in a
valid state (use SetDetectLine and GetDetectLine) and once this is
OK you must assign exactly one scope to be the master. This is
normally the first one found but is an arbitrary choice in reality (all
scopes can acts as masters or slaves). Internally, the master scope is
set to generate certain signals whereas slaves are set to monitor
them. It is important not to set more than one master3 !!!

Note that it is important to call this initialisation function for all
scopes one after the other without making intermediate settings per
scope. This is because part of the initialisation involves a partial
reset of the internal scope controller on each channel to guarantee
synchronisation with the other channels in the stack.

2 To makes sure that all scopes are correctly connected to each other via the stack
3 You will get very strange behaviour from one or all scopes, although no damage will result.

Elan Digital Systems Ltd. 22 USBscope50 SDK Iss2

3.3.14 USBscope50Drvr_SetDetectLine

in: int (channel)
in: int (master)
in: int (state)
return: none

alias: _USBscope50Drvr_SetDetectLine@12

This function allows control over a general purpose IO pin that runs
between all stacked scopes. Any scope may drive it and/or sense it.
It is used to detect whether all scopes are connected together
properly in the stack. For single scope use, it is not relevant.

channel can range from 1 to “devices found”.
master is set to 0 to “float” the detect line on that scope i.e. make it
high impedance and so allow another scope to drive it (in this case
state will be don’t care). Set master to a non-zero value to make that
scope drive the detect line with the state requested.
state can be 0 or 1 (only).

As a general strategy, this function is best used directly after
OpenAndReset has been done for all channels. Then, set all detect
lines to “float” i.e. master=0. Then for just the master channel, set
master=1 and set the detect line to 0 and then to 1. For each of these
detect line states use GetDetectLine to read all the scope’s detect
sense inputs. Any scope that does not report a state that follows the
master’s is deemed not in the stack and hence invalidates the entire
stack4. In this case, the application should follow a suitable exit
strategy and close all open scopes.

4 The stack requires ALL scopes to be properly joined together.

Elan Digital Systems Ltd. 23 USBscope50 SDK Iss2

3.3.15 USBscope50Drvr_GetDetectLine

in: int (channel)
return: int (detect line’s sensed state)

alias: _USBscope50Drvr_GetDetectLine@4

This function returns the detect line’s sense for a particular scope. It
can be used in conjunction with SetDetectLine to form the basis of a
stack-validation procedure before scopes are initialised further. For
single scope use, it is not relevant.

channel can range from 1 to “devices found”.
The return value is the state of the detect line i.e. 0 or 1.

Elan Digital Systems Ltd. 24 USBscope50 SDK Iss2

3.3.16 USBscope50Drvr_ SetBaseAdcClk

in: int (channel)
in: int (clock required)
return: none

alias: _USBscope50Drvr_SetBaseAdcClk@8

This function sets the scope’s base clock rate for acquisitions.

channel can range from 1 to “devices found”.
clock must be either 50, 25 or 10, no other choices are allowed.
These represent the base adc clock rate in MHz.

This call, in conjunction with the SetDecimationRatio, is used to set
the overall sampling speed.

Only 50MHz may be used in RIS mode.

Elan Digital Systems Ltd. 25 USBscope50 SDK Iss2

3.3.17 USBscope50Drvr_GetBaseAdcClk

in: int (channel)
return: int (clock in use)

alias: _USBscope50Drvr_GetBaseAdcClk@4

This function returns the clock in use by the ADC.

channel can range from 1 to “devices found”.
The return will be 50, 25 or 10. These represent the base adc clock
rate in MHz.

Elan Digital Systems Ltd. 26 USBscope50 SDK Iss2

3.3.18 USBscope50Drvr_SetDecimationRatio

in: int (channel)
in: int (ratio required)
return: none

alias: _USBscope50Drvr_SetDecimationRatio@8

This function sets the division ratio used by the adc sampling logic.
The ratio must be set to 1 when using 50 and 25MHz for the base
adc clock. Only the 10MHz clock supports decimation, which can
range from 1 to 400000. A ratio of 1 means that scope will sample
at 10MSPS, and ratio of 400000 means that the scope will sample at
(10/400000)MSPS. Only certain ratios are possible.

channel can range from 1 to “devices found”. All scopes in a stack
must be set to the same sample rate for predictable results.
ratio can only be one of the following values:
1,2,4,10,20,40,100,200,400,1000,2000,4000,10000,20000,40000,10
0000,200000,400000

Elan Digital Systems Ltd. 27 USBscope50 SDK Iss2

The following table shows the rates available (note that the first 4
vary the screen zoom to affect the T/Div adjustment):

T/Div Pts/Div Time zoom5 Base clock Ratio
200ns 10 10 50 1
400ns 20 5 50 1
1us 50 2 50 1
2us 100 1 50 1
4us 100 1 25 1
10us 100 1 10 1
20us 100 1 10 2
40us 100 1 10 4
100us 100 1 10 10
200us 100 1 10 20
400us 100 1 10 40
1ms 100 1 10 100
2ms 100 1 10 200
4ms 100 1 10 400
10ms 100 1 10 1000
20ms 100 1 10 2000
40ms 100 1 10 4000
100ms 100 1 10 10000
200ms 100 1 10 20000
400ms 100 1 10 40000

1s 100 1 10 100000
2s 100 1 10 200000
4s 100 1 10 400000

This table refers only to real time single-shot sampling. The sample
period can be computed from T/Div divided by Pts/Div.

Random Interleaved Sampling or RIS mode is discussed in section 4.
For reference, the RIS sampling rates are listed below:

T/Div Pts/Div Time zoom Base clock Ratio
4ns 4 25 50 1
10ns 10 10 50 1
20ns 20 5 50 1
40ns 40 2.5 50 1
100ns 100 1 50 1

5 Note the Pts/Div and zoom factors are essentially the same parameter…they are listed separately to
clarify the reduction in the number of points plotted when zoom is employed.

Elan Digital Systems Ltd. 28 USBscope50 SDK Iss2

3.3.19 USBscope50Drvr_GetSamplePeriod

in: int (channel)
in: int (current (or stopped))
in: int (haltperiod (when stopped))
return: float (period in seconds)

alias: _USBscope50Drvr_GetSamplePeriod@8

This function returns the sample period set for the scope. Rather
than just return the currently in-use period, the function also allows
return of the period that was in use when the scope’s acquisition was
halted.

channel can range from 1 to “devices found”.
current is treated as a flag; pass in zero to have the function return a
value equal to the haltperiod parameter, or pass in “current” as non-
zero to return the current sample period in use by the scope.

This function is normally used with “current” set to 1. However, if
the application sets the scope into a halted state, it is important for
the application (not the driver) to remember the period at that point
and save it in a variable6. Then, by passing this value into each use
of this function within the application and by controlling the
“current” parameter to reflect the scope’s acquisition state, the
usefulness of the function is extended as it now returns the period
currently in use or the period that was used to acquire the data when
the scope was halted. This allows common code to be used when
calling the GetSamplePeriod function even if the user has halted the
scope and has subsequently changed the timebase control.

This function always returns 1ns when in RIS mode because this is
the fundamental time resolution, changes in the displayed timebase
are achieved by simply altering the number of points per division
plotted on the screen (i.e. the data is zoomed on the time axis as
listed in 3.3.18)

6 To allow the data to be saved perhaps, or to correctly display spectrum FFT bounds. It is also useful
so as to allow the user to adjust the timebase when the scope is in a stopped state, and have this action
work as a virtual timebase “zoom” effect. You can try this with the USBscope50 software.

Elan Digital Systems Ltd. 29 USBscope50 SDK Iss2

3.3.20 USBscope50Drvr_GetSampleDepth

in: none
return: int (samples)

alias: _USBscope50Drvr_GetSampleDepth@0

This function returns the number of sample points per full
acquisition. For the USBscope50 it always returns 3000. The
application can use this call to size dynamic arrays that will be used
to hold sample data.

Elan Digital Systems Ltd. 30 USBscope50 SDK Iss2

3.3.21 USBscope50Drvr_SetUpFrontEnd

in: int (channel)
in: int (gain)
in: int (dc)
in: int (gnd)
in: int (ris)
return: none

alias: _USBscope50Drvr_SetUpFrontEnd@20

This function configures the scope’s analogue front-end. It controls
the coupling, gain and sampling mode for each scope. If you make
the same setting twice or more in a row, only the first call will
change the hardware.

channel can range from 1 to “devices found”.
gain can be 0,1 or 2 which equate to front end attenuation settings of
1, 10 or 100 (equating to full scale ranges of +/- 0.3, 3.0, 30.0V with
a “x1” scope probe, or +/-3.0, 30.0, 300.0V with a “x10” scope
probe). The ADC resolution for each range is 8 bits which gives a
minimum ADC step size of approximately 23.6mV, 236mV and
2.36V for the x10 ranges.
dc is a flag: zero gives AC coupling; non-zero gives DC coupling.
gnd is a flag: zero sets for a normal input; non-zero grounds the
scope channel internally.
ris is a flag: zero sets the scope for normal single-shot acquisition;
non-zero sets the scope into “random interleaved sampling” or RIS
mode. More on this mode in section 4.

Remember that the higher the attenuation setting, the larger the
minimum ADC step size. This will mean that any small offset in the
front end will effectively look amplified in the higher ranges i.e. the
offset error with a grounded input probe will look larger.

Elan Digital Systems Ltd. 31 USBscope50 SDK Iss2

3.3.22 USBscope50Drvr_SetOffset

in: int (channel)
in: float (offsetpct)
return: none

alias: _USBscope50Drvr_SetOffset@8

This function configures the scope’s front-end offset. Adjusting the
offset allows a channel to be positioned up or down the vertical
scale. The offset is achieved by means of d-to-a converter in the
scope’s front-end circuitry.

channel can range from 1 to “devices found”.
offsetpct is the desired offset, with a setting of 100.0 putting the
channels trace to the very top of the vertical range, and value of 0.0
setting it to the middle of the range and a setting of –100.0 setting it
to the very bottom of the range.

Note that the offset setting is made irrespective of the front-end
attenuator range setting, making application software very easy to
structure7. Also note that when you offset a channel the sample
values that are returned by the scope will also offset (because the
offset is actually added to the channel voltage in the front end). The
application must therefore subtract any offset when outputting
readings derived from the data. For example, if the offset is used to
move the channel half way up the vertical scale, then any readings
computed from the sample data would need to have this amount of
voltage subtracted from them (i.e. the reading is relative to the offset
zero point). This is also true when performing math functions on the
channel data…the math functions must work out readings relative to
the offset zero point.

7 In the USBscope50 software, the control for offset actually uses bound of +127 to –127 but these are
simply converted to 100.0 and –100.0 respectively before being passed to this function.

Elan Digital Systems Ltd. 32 USBscope50 SDK Iss2

3.3.23 USBscope50Drvr_SetTrigMaster

in: int (channel)
in: int (master)
return: none

alias: _USBscope50Drvr_SetTrigMaster@8

This function configures a scope to be a trigger master or a trigger
slave.

channel can range from 1 to “devices found”.
master is a flag: set to zero to set up the scope to be a trigger slave;
set to non-zero to make the scope be a trigger master.

Exactly one scope at a time can be the trigger master, the rest must
be set as slaves. This setting is analogous to the trigger channel
selection on a regular scope except that the setting must be made by
configuring each scope independently (so that only one is the
master).

Elan Digital Systems Ltd. 33 USBscope50 SDK Iss2

3.3.24 USBscope50Drvr_GetTrigMaster

in: none
return: int (channel)

alias: _USBscope50Drvr_GetTrigMaster@0

This function returns the channel number of the scope currently set
to be the trigger master.

Elan Digital Systems Ltd. 34 USBscope50 SDK Iss2

3.3.25 USBscope50Drvr_SetTrigType

in: int (channel)
in: int (type)
return: none

alias: _USBscope50Drvr_SetTrigType@8

This function configures the scope’s trigger types. It is only
applicable for the scope that is acting as the trigger master as it is
responsible for generating an overall trigger signal. However, for
ease of programming it is usually simpler to configure all scopes to
the same trigger type. It also only applies if the scope is put into
normal trigger mode. In free-run mode the setting has no relevance
because the scope will acquire immediately when AcquisitionStart is
called.

The channel should be set to the channel designated as the trigger
channel, although it is OK to set all scopes to the same trigger type.
type can be set to 0,1,2 or 3 corresponding to “less than”, “greater
than”, “neg edge” and “pos edge” respectively.

Elan Digital Systems Ltd. 35 USBscope50 SDK Iss2

3.3.26 USBscope50Drvr_SetNormTrig

in: int (channel)
in: int (norm)
return: none

alias: _USBscope50Drvr_SetNormTrig@8

This function configures the scope’s trigger mode to be normal or
free running. If free-run is selected, trigger delay is automatically
set to zero in the hardware and the pre-trigger depth is also zeroed.
On selecting normal trigger, trigger delay is not adjusted and the
desired pre-trigger depth must be re-configured by the application.

channel can range from 1 to “devices found”. All scopes must be
set to the same trigger mode.
norm is a flag: set to zero to configure free-run; set to non-zero to
configure external “normal” triggering.

Free running mode does not rely on any external input signal
conditions to cause the scope to complete an acquisition, the
application only needs to call AcquisitionStart to commence an
acquisition and it will complete as soon as all samples have been
collected by the scope. Conversely, the normal mode will cause the
scope to block the completion of an acquisition until the external
input signal meets the triggering criteria set via SetTrigType and the
trigger threshold.

Note that “auto” triggering is achieved in the USBscope50 software
by periodically putting the scope into normal trigger mode and
waiting for some fixed period of time to see if it triggers. If it does
trigger, the scope is left in normal mode, otherwise the scope is
reverted back to free running mode.

Elan Digital Systems Ltd. 36 USBscope50 SDK Iss2

3.3.27 USBscope50Drvr_SetTrigThreshold

in: int (channel)
in: float (threshpct)
return: none

alias: _USBscope50Drvr_SetTrigThreshold@8

This function configures the scope’s trigger threshold voltage for use
when in normal triggering (it has no relevance in free-run mode).
The trigger threshold voltage is applied to a hardware comparator
inside the USBscope50 and the output from this comparator drives
the triggering circuitry. The threshold is only important for the
scope that is set as the trigger master, although for simplicity, the
application may choose to configure all scopes to the same trigger
threshold.

The channel should be set to the channel designated as the trigger
channel, although it is OK to set all scopes to the same trigger
threshold.
threshpct is the percentage of the current input voltage range. A
value of 100.0 will set the threshold to the very top of the vertical
deflection, a value of 0.0 will set it to the middle of the deflection,
and a value of –100.0 will set it to the very bottom of the vertical
deflection.

The setting requested is made irrespective of the current front-end
configuration or channel offset applied. This makes application
programming easy as no scaling or adjustment needs to be made as
the channel is offset or as the attenuator is changed. If it is desired to
move the trigger threshold with the trigger channel’s offset, then this
can be achieved via a simple numerical addition of the channel’s
offset percentage and the desired trigger threshold percentage.
Values that overflow 100 or –100 are clamped by the driver.
Remember that the full range of adjustment will still be +/-100% so
if the channel is offset by say –50% and your application control
only allows a +/-100& adjustment range, then the highest trigger
threshold you could set would be +50%. The application would
need to alter the adjustment range to suit to ensure that +100% could
still be reached.

Elan Digital Systems Ltd. 37 USBscope50 SDK Iss2

3.3.28 USBscope50Drvr_GetTriggeredStatus

in: int (channel)
return: int (0=not triggered, 1=triggered)

alias: _USBscope50Drvr_GetTriggeredStatus@4

This function returns the status of an internal latched signal showing
whether the scope has triggered or not.

channel can range from 1 to “devices found”.

Elan Digital Systems Ltd. 38 USBscope50 SDK Iss2

3.3.29 USBscope50Drvr_SetPreTrigDepth

in: int (channel)
in: float (buffpct)
return: none

alias: _USBscope50Drvr_SetPreTrigDepth@8

This function set up the number of samples that are preserved during
an acquisition that were captured before the trigger point. This only
applies when the scope is in normal triggering mode.

channel can range from 1 to “devices found”.
buffpct is the percentage of the buffer before the trigger point that
you wish to preserve. A setting of 0.0 means that the trigger point
will be the first sample preserved, a setting of 50.0 means that half
the buffer will be preserved. The largest value that can be set is
99.0.

Pre-triggering refers to the way the scope saves data into its buffer.
The scope uses a circular buffer to continuously capture sample data
once the AcquistionStart command is issued. The hardware then
uses the value set for the pre-trigger depth to decide when it has
acquired enough samples to allow a trigger event to happen (the
scope “arms” itself internally). Once the trigger event does happen,
samples continue to flow into the buffer but will cease one the
number of samples acquired after the trigger event, equals the buffer
depth (3000) minus the pre-trigger depth. When the sample buffer is
read-out, the first samples will be from a time prior to the trigger
event though to the most “recent” samples that happened after the
trigger event8.

8 It is worth testing this with the USBscope50 software so that you can fully appreciate the effect of
pre-trigger. Set the scope to normal triggering and observe a square wave…now try adjusting the pre-
trigger slider at the bottom edge of the display. You will see that its effect is to move the waveform
left and right relative to the trigger point.

Elan Digital Systems Ltd. 39 USBscope50 SDK Iss2

3.3.30 USBscope50Drvr_SetTriggerDelay

in: int (channel)
in: float (delay)
return: none

alias: _USBscope50Drvr_SetTriggerDelay@8

This function sets up a delay that the scope will wait, after a trigger
event, until it completes its acquisition sweep. This only applies
when the scope is in normal triggering mode. Only the trigger
channel controls the trigger delay but for convenience it is OK to set
all scopes to the same delay if desired.

The channel should be set to the channel designated as the trigger
channel, although it is OK to set all scopes to the same trigger delay.
delay is the absolute delay in seconds. The scope has an internal
delay counter that is 16-bits in length. The value loaded into the
counter is computed by the driver by taking the requested delay and
dividing it by the current sample period9. Hence the delay is always
rounded (or truncated) to the nearest whole sample period.
Requesting a delay that is more than 65535 times the current sample
period will give unpredictable results.

9 The USBscope50 software uses a control with a range from 0 to 65535 which it turns into an absolute
delay by multiplying by the current sample period. If you do the same remember to re-compute your
displayed delay time if you change the timebase.

Elan Digital Systems Ltd. 40 USBscope50 SDK Iss2

3.3.31 USBscope50Drvr_AcquisitionStart

in: int (channel)
return: none

alias: _USBscope50Drvr_AcquistionStart@4

This function is called to begin an acquisition sweep. All channels
must be included with the trigger master channel being started last.

channel can range from 1 to “devices found” and must be called for
all scopes and importantly, so that the last scope started is the trigger
master.

Once the acquisition has been started, the status can be checked by
calling GetAcqusitionState.

An acqusition must be ended by calling AcquisitionEnd. Note also,
that changing the scope’s sample rate while an acquisition is in
progress is to be avoided; call AcquisitionEnd before making such a
change.

This function automatically handles both single shot and RIS
acquisitions i.e. call it to start an acquisition when in either mode.

Elan Digital Systems Ltd. 41 USBscope50 SDK Iss2

3.3.32 USBscope50Drvr_AcquisitionEnd

in: int (channel)
return: none

alias: _USBscope50Drvr_AcquistionEnd@4

This function is called to end an acquisition sweep. All channels
must be ened but the order is not important.

channel can range from 1 to “devices found” and must be called for
all scopes in any order that is convenient.

This function must be called after an acquisition has completed or if
an acquisition needs to be terminated for any reason. It must also be
used to terminate any acquisition prior to adjusting the scope’s
sample rate.

This function automatically handles both single shot and RIS
acquisitions i.e. call it to stop an acquisition when in either mode.

Elan Digital Systems Ltd. 42 USBscope50 SDK Iss2

3.3.33 USBscope50Drvr_GetAcquisitionState

in: int (channel)
return: int (0=stopped, 1=acquiring)

alias: _USBscope50Drvr_GetAcquistionState@4

This function is called to enquire the current status of an acquisition.
It can be used to poll the scope to see when it has completed an
acquisition started with a call to AcquisitionStart. When using more
than one scope it is advisable to get the status from the master
channel although this is not essential; the status returned will apply
to all the channels in the stack.

channel can range from 1 to “devices found” but the master channel
is the best scope to poll for this status.

Elan Digital Systems Ltd. 43 USBscope50 SDK Iss2

3.3.34 USBscope50Drvr_GetBufferBlocks

in: int (channel)
inout: float (data array)
in: int (blocks)
return: none

alias: _USBscope50Drvr_GetBufferBlocks@12

This function is used to fetch zero or more blocks of 512 data
samples into a user’s buffer.

channel can range from 1 to “devices found”.
data is a pointer to an array of floats, that must be large enough to
hold the requested total size of (512*blocks) floats
blocks is the number of 512 sized sample blocks to recover.

After an acquisition has ended or been terminated this function is
used to get the sample data points into an array. Each data point can
range from +128.0 down to –127.0 although the exact range may
vary a little (+/-5%) from this theoretical band due to the scaling and
corrections applied to the data points as they are unloaded from the
hardware. Regardless of the range variation, +128 should be
considered as full-scale positive and –127 as full scale negative.

To recover the entire data buffer use a block count of 6. This will
return 3072 points, the last 72 of which can be discarded.

Note that each channel must have its data recovered individually. A
faster method is also available, see GetBufferBlocksMultiChan.

For VB users, do not try and pass in one dimension of a multi-
dimensional array as the internal array ordering between VB and
driver may be different. Instead, create a temporary one dimensional
array of singles and pass this in as temp(0). After the call, copy the
data from temp to your multi-dimensional array using a loop.

Elan Digital Systems Ltd. 44 USBscope50 SDK Iss2

3.3.35 USBscope50Drvr_GetBufferBlocksMultiChan

in: int (firstchannel)
in: int (lastchannel)
inout: float (data array)
in: int (blocks)
return: none

alias: _USBscope50Drvr_GetBufferBlocks@16

This function is used to fetch zero or more blocks of 512 data
samples into a user’s buffer, for one or more channels.

firstchannel can range from 1 to “devices found”. This is the first
channel who’s data buffer will be collected.
lastchannel can range from 1 to “devices found” and must be higher
or equal to firstchannel. This is the last channel who’s data buffer
will be collected.
data is a single, one-dimensional array into which the data will be
packed, in channel order. It must be large enough to hold
(512*blocks*(lastchannel- firstchannel+1)) floats
blocks is the number of 512 sized sample blocks to recover.

This function uses some processing optimisations to increase the
data throughput rate for multi-scope applications. It can still be used
for single channels if required by setting firstchannel and lastchannel
to the same value.

The data is packed into the data array so that data for firstchannel
lies between indexes 0 and (512*blocks –1). Data for
(firstchannel+1) lies between (512*blocks) and (512*blocks*2 –1)
etc.

Elan Digital Systems Ltd. 45 USBscope50 SDK Iss2

3.3.36 USBscope50Drvr_GetBufferRIS

in: int (channel)
inout: float (data array)
in: int (samples)
inout: float (risbin)
inout: int (warning)
inout: int (reject)
return: none

alias: _USBscope50Drvr_GetBufferRIS@24

This function is used to fetch zero or more bytes data samples into a
user’s buffer after an RIS acquisition.

channel can range from 1 to “devices found”.
data is a pointer to an array of floats, that must be large enough to
hold the requested total size of (samples) floats
samples is the number of samples to recover, from 0 to sampledepth.
risbin is the “bin” number that this data set belongs to, from 0.000 to
19.999. This value’s fractional part can be truncated or used to alter
the way the software uses this sample data in combination with
previous sample data.
warning is always set to 0 by this function. Do NOT pass NULL!
reject is always set to 0 by this function. Do NOT pass NULL!

Elan Digital Systems Ltd. 46 USBscope50 SDK Iss2

3.3.37 USBscope50Drvr_GetSamplesSinceTrigger

in: int (channel)
return: int (samples)

alias: _USBscope50Drvr_GetSamplesSinceTrigger@4

This function is used to get the number of cumulative samples that
have been acquired since a trigger event (or the acquisition start in
free-run mode). It is used only for slow timebase settings e.g. slower
than 40ms/div and can be used to implement a roll-mode display i.e.
one where the sample buffer is acquired in a quasi-continuous
fashion and re-painted a section at a time.

channel can range from 1 to “devices found”. Normally the channel
will be the master channel but in fact this is arbitrary.

Elan Digital Systems Ltd. 47 USBscope50 SDK Iss2

3.3.38 USBscope50Drvr_GetBufferIncremental

in: int (channel)
inout: float (data array)
in: int (samples)
in: int (numsofar)
return: none

alias: _USBscope50Drvr_GetBufferIncremental@16

This function is used to fetch zero or more data samples into a user’s
buffer for use in a roll-mode scope display. It is not intended for any
other use. See GetSamplesSinceTrigger.

channel can range from 1 to “devices found”.
data is a pointer to an array of floats, that must be large enough to
hold the requested total size of (samples) floats
samples is the number of sample points to recover.
numsofar is the running total maintained by the application of the
data points collected since trigger. The data is copied into the data
array at the index (numsofar).

When running in roll-mode, the application repeatedly checks the
number of samples that have been collected by the hardware since
trigger (or acquisition start for free-run mode) using the
GetSamplesSinceTrigger call. This value is checked to see if it has
advanced sufficiently to make it worth collecting and/or displaying
(or saving) these new data points. For the USBscope50 software, a
threshold of 10 new points is used. Then, the GetBufferIncremental
call is used to recover these samples onto the “end” of the data
buffer in use by the application. The new samples are copied to the
array at index (numsofar). The application must ensure that
numsofar is zeroed before each acquisition sweep, and it then
increases by no more than the number of incremental samples
reported since trigger prior to the next GetBufferIncremental call.
Additionally, the GetAcqusitionState call is used to see when the
overall acquisition finishes, so that the process can start over again.

Elan Digital Systems Ltd. 48 USBscope50 SDK Iss2

3.3.39 USBscope50Drvr_SetCalSource

in: int (channel)
in: int (state)
return: none

alias: _USBscope50Drvr_SetCalSource@8

This function is used to enable and disable the 1KHz square wave
used for probe compensation / calibration.

channel can range from 1 to “devices found”.
state is a flag: set to 0 to turn the source off (low); set to non-zero to
turn the source on (3V pk-pk).

Your are strongly advised to leave the source off whenever possible
to avoid its fast edges coupling into high-impedance sources.

Elan Digital Systems Ltd. 49 USBscope50 SDK Iss2

3.3.40 USBscope50Drvr_SetLEDMode

in: int (channel)
in: int (mode)
return: none

alias: _USBscope50Drvr_SetLEDMode@8

This function is used to control the scope’s LED.

channel can range from 1 to “devices found”.
mode can be 0 (off), 1 (slow blink), 2 (fast blink), 3 (on)

Elan Digital Systems Ltd. 50 USBscope50 SDK Iss2

3.3.41 USBscope50Drvr_FFT

inout: double (fft array)
in: int (length)
in: double (dB)
in: int (window)
inout: int (peakbin)
return: none

alias: _USBscope50Drvr_FFT@24

This function is used to do an FFT on the time data.

fftarray holds the time domain sample data on the way in, and
contains half the number of frequency domain data points on the
way out (i.e. the FFT is conducted in-place). The output data is
magnitude only. The array is indexed from zero. On the way out,
the zero’th bin is a DC term i.e. the magnitude of the response at
f=0Hz. The bins are spaced at the scope’s sample rate in Hz divided
by the “length” (i.e. if the sample rate is set to 50MSPS or 50MHz,
then for a 2K point FFT, each of the 1024 frequency bins is 50/2048
MHz wide or 24.4KHz approx). You are advised to normalise the
input data on the way in to avoid rounding errors; the USBscope50
software takes the raw sample data and divides each point by 255 to
give an input data range of +/-0.5.
length is the number of time domain points in the input data set.
This value must be a power of 2. The number of frequency bins
returned will be half this value.
dB is a value that can be used to convert the magnitude response
from linear to decibels. Pass in 0 to keep the FFT result in linear
form i.e. the bins will hold the amplitude data in volts for each bin.
Alternatively, pass in a positive value that will represent “full scale
amplitude” to get the result in decibels. For the normalised scheme
mentioned above, the dB figure would be passed as 0.5.
window is the desired spectral window to use 0: rectangular (i.e. no
shaping) 1: Hanning 2: Hamming 3: Triangular 4: Welch.
peakbin reports the bin with the highest value in it, excluding bin
zero.

Elan Digital Systems Ltd. 51 USBscope50 SDK Iss2

3.3.42 USBscope50Drvr_ReScaleSampleData

inout: float (olddata array)
inout: float (newdata array)
in: int (points)
in: float (oldofspct)
in: float (newofspct)
in: float (oldvolts)
in: float (newvolts)
return: none

alias: _USBscope50Drvr_ReScaleSampleData@28

This function is used to re-scale sample data. It is used when the
scope has been halted but the user then adjust the channel offset or
the channel volts per division. Because these actions are no longer
acting on the hardware to change the acquired data, the software
must re scale the data. Note that time domain scaling (caused by
adjusting the timebase) is dealt with by zooming in or out on the
time axis.

olddata is the original un-scaled data array that was saved when the
scope was halted. The data points will be the +128/-127 range as
described previously.
newdata is the new scaled data array that was computed from the
olddata array.
points is the number of sample points to re-scale.
oldofspct is the channel offset in percent when the scope was halted
newofspct is the desired channel offset in percent
oldvolts is the channel volts/division setting when the scope was
halted. This figure would be 0.3,3 or 30 for example. The exact
values are actually not important because only the ratio with
newvolts matters.
newvolts is the desired channel volts/division setting

Elan Digital Systems Ltd. 52 USBscope50 SDK Iss2

4 RIS Mode

4.1 Overview

RIS mode uses the scope sampling at 50MSPS, to achieve an
effective time resolution of 1ns, 20 times better the natural time
resolution in single shot mode.

Please refer to ES370 USBscope50 User’s Guide, for details on the
operational limitations of RIS mode. It is suggested that you try the
RIS mode using the USBscope50 application software before trying
to code RIS in your own application. This will allow you to become
familiar with is capabilities and understand what it can and can’t do.

4.2 Principals of Operation

The scope includes special hardware that is able to measure the time
between when the analogue input to the scope causes a hardware
trigger, and the time of the first 50MSPS data sample. This time is
expressed as a “bin” number between 0.000 to 19.999 i.e. there are
20 bins that give rise to the effective 20-fold improvement in time
resolution. If the bin number is 0, the trigger and first sample were
coincident, if the bin number were 10.5 there was a 10.5ns delay,
and if the bin number were 19.999 then the delay was nearly a full
20ns sample period. The measured delay is, of course, completely
random and so multiple acquisitions are needed until a “hit” is made
on each of the 20 bins. It can therefore take some time for this to
happen. Software should perform multiple acquisitions as quickly as
possible to build up the waveform.

To use the scope in RIS mode, use the SetUpFrontEnd call (3.3.21)
and set the ris flag to 1. Configure the sample rate to 50MSPS. The
scope must be set to normal triggering and the pre-trigger depth
must be set to 0. Apart from this the scope’s configuration is
performed the same as for single shot mode.

To acquire data, simply use the AcquistionStart call (3.3.31) and end
it (once it has finished) using the AcquistionEnd call (3.3.32).
Collect the data from the acquisition using the GetBufferRIS call
(3.3.36). If you plan to keep the depth of your acquisition constant

Elan Digital Systems Ltd. 53 USBscope50 SDK Iss2

at 3000 points then there is no point getting more than 3000/20
samples from this call i.e. pass in 150 as the number of samples to
collect. Collecting more points will merely slow the data recovery
down as they have to be sent over the USB. As will now be
explained, these 150 samples will get spread out in time by a factor
of 20.

4.3 Organising the Data

Each acquisition will return a set of data, probably 150 points as
noted above.

In software, your sample data array is 3000 points deep, so where do
you put these 150 data points? The answer is that you spread them
out into every 20th location in the array, and the starting point in the
array is given by the bin number reported when getting the 150
points. For example, if you get 150 points and the bin number was
0.000, then put sample[0] in array[0], sample[1] in array[20],
sample[2] in array[40], sample[3] in array[60] etc.

If the bin had been 14.000, then put sample[0] in array[14],
sample[1] in array[34], sample[2] in array[54], sample[3] in
array[74] etc.

Keep taking acquisitions and for each one, spread the data out into
your array as described. Over a period of time, the waveform will
“build up” (as more and more “bins” get hit).

There are two choices on how to process the floating point bin
number. You could simply throw away the fractional part to yield a
bin number between 0 and 19 inclusive. This can be used as a direct
index into your array. A downside to this approach is that the bin
value becomes quite coarse and this can show as small step
discontinuities in the displayed waveform near to fast changing
edges.

A more sophisticated approach is to use the fractional part of the bin
number to decide how much “weight” to place on the new sample
relative to the sample that is already in that array position i.e. the old
data. This technique essentially provides filtering between the old

Elan Digital Systems Ltd. 54 USBscope50 SDK Iss2

and new data and helps to smooth such discontinuities. The
USBscope50 application software uses such a technique and applies
a weighting that ramps linearly from 0.000 when frac=0.000, to
1.000 when frac=0.500, and then ramps back down to 0.000 again
when frac=0.999. The weighting is then used as follows:

 Array[n] = Array[n]*(1.000-weighting) + Sample[m]*(weighting-1.000)

As can be seen, if the bin reported is “right in the middle of the bin”
then the new sample replaces the existing array data. If the bin
reported is at “either end of the bin” (i.e. frac is near 0.000 or 0.999),
the old sample in the array is preserved, and at points in-between the
new and old samples are averaged together in proportion to the
“nearness” to the bin’s centre.

It is important to realise that the bin number reported will always
have a level of uncertainty (inaccuracy) in it, and that uncertainty
means that the fractional part of the bin number should not be taken
as an absolute, it is just an approximation. The number of bins
could be increased from 20 by using the fractional part with more
significance. This will slow the overall “waveform build up” time
because the randomness of the bin hits makes it less likely that any
one bin will get hit. The number of bins could be reduced from 20
by placing less significance on the fractional part and by merging
several bins. This will reduce the “waveform build up” time at the
expense of lower time domain resolution.10

10 We will not support any technical queries arising from deviation from the standard 20 bin mode.

Elan Digital Systems Ltd. 55 USBscope50 SDK Iss2

5 General Programming Considerations

5.1 Saved Scope Settings

The driver does not save or restore scope settings. It is up to the
application to perform this function, using the registry, an INI file or
other method as appropriate.

5.2 Leaving Ports Open

During development a common problem is that each channel’s port
is opened but never closed, perhaps due to a logical programming
error or because the application is terminated prematurely. Leaving
the COM port open usually means it cannot be opened again next
time, even if the scope is unplugged and re-plugged. The effect is
that Enumerate will return zero scopes. The remedy is a reboot.

Elan Digital Systems Ltd. 56 USBscope50 SDK Iss2

6 Example Code & Header Files

6.1 Visual Basic6

A single .bas header file is needed to access the library functions:

 USBscope50Drvr_if.bas

Included in the SDK are two VB6 projects. The first is a demo of a
simple multi-channel scope. It does not attempt to cover all the
features that USBscope50 does, but is useful to show the basis of a
working application. The demo uses a font file to create the ground
channel markers on the plot. The file is in the demo folder but must
be registered with Windows before it will work (copy it to
windows\fonts)

Elan Digital Systems Ltd. 57 USBscope50 SDK Iss2

The second demo is a frozen release of the full USBscope50
application software. As such, it supports many more the features
that the scope can perform, but inevitably is many times more
complex that the simple scope demo. Note too that the full project
uses an extra header file, which contains some undocumented library
calls, used primarily for debugging and diagnostics.

Elan Digital Systems Ltd. 58 USBscope50 SDK Iss2

Elan Digital Systems Ltd. 59 USBscope50 SDK Iss2

6.2 C/C++

A single .h header file and a single .cpp file are needed to access the
library functions:

 USBscope50Drvr_if.h

USBscope50Drvr_if.cpp

The cpp file declares the external functions, which are themselves
instantiated as pointers to functions using the LoadLibrary and
GetProcAddress methods to attach to the DLL.

In order to use the function calls, include the .h file and the .cpp file
in your project and call USBscope50Drvr_OpenDrvr as documented
above at 3.3.1. On exit be sure to call CloseDrvr.

The C demo is a simple 32-bit console application to recover some
acquisition data and average it to DC value. The overall
configuration of the scopes and the steps to validate the stack are
clearly shown there, together with a basic free-running acquisition.
The methods used to implement auto-triggering are more complex,
and requires the application to periodically put the scope into a
normal triggered mode, wait to see if it triggers and then either time
out and revert to free-run mode or to leave the scope in normal
trigger if it did trigger. Code to demonstrate mode this can be found
in one of the VB demo files. Open the form1.frm file in a text editor
(find it under examples\vb6\simplescope). You can ignore the first
part of the file as it is simply the form constructor information.
Scroll down and search for a function called RunTimer_Timer. In
there you will see the logic required for auto triggering11.

11 Don’t worry if you’re not a VB programmer…the structure of the code is the only important concept
and much of that can be very easily mapped to C by an experienced coder. Note that the
RunTimer_Timer function is invoked every 10ms using a VB timer object…effectively this routine
drives the entire scope acquisition and display.

	OVERVIEW
	THE USB INTERFACE
	USB Device Drivers
	Windows 2000, XP
	Windows 98SE, ME

	Digital Signing

	THE DRIVER INTERFACE
	Overview
	Terminology
	Driver Functions
	USBscope50Drvr_OpenDrvr
	USBscope50Drvr_CloseDrvr
	USBscope50Drvr_DrvrIss
	USBscope50Drvr_Enumerate
	USBscope50Drvr_GetProductName
	USBscope50Drvr_GetSerialNumber
	USBscope50Drvr_GetHWRev
	USBscope50Drvr_GetPortNumber
	USBscope50Drvr_GetControllerRev
	USBscope50Drvr_OpenAndReset
	USBscope50Drvr_PortOpen
	USBscope50Drvr_Close
	USBscope50Drvr_InitScope
	USBscope50Drvr_SetDetectLine
	USBscope50Drvr_GetDetectLine
	USBscope50Drvr_ SetBaseAdcClk
	USBscope50Drvr_GetBaseAdcClk
	USBscope50Drvr_SetDecimationRatio
	USBscope50Drvr_GetSamplePeriod
	USBscope50Drvr_GetSampleDepth
	USBscope50Drvr_SetUpFrontEnd
	USBscope50Drvr_SetOffset
	USBscope50Drvr_SetTrigMaster
	USBscope50Drvr_GetTrigMaster
	USBscope50Drvr_SetTrigType
	USBscope50Drvr_SetNormTrig
	USBscope50Drvr_SetTrigThreshold
	USBscope50Drvr_GetTriggeredStatus
	USBscope50Drvr_SetPreTrigDepth
	USBscope50Drvr_SetTriggerDelay
	USBscope50Drvr_AcquisitionStart
	USBscope50Drvr_AcquisitionEnd
	USBscope50Drvr_GetAcquisitionState
	USBscope50Drvr_GetBufferBlocks
	USBscope50Drvr_GetBufferBlocksMultiChan
	USBscope50Drvr_GetBufferRIS
	USBscope50Drvr_GetSamplesSinceTrigger
	USBscope50Drvr_GetBufferIncremental
	USBscope50Drvr_SetCalSource
	USBscope50Drvr_SetLEDMode
	USBscope50Drvr_FFT
	USBscope50Drvr_ReScaleSampleData

	RIS Mode
	Overview
	Principals of Operation
	Organising the Data

	General Programming Considerations
	Saved Scope Settings
	Leaving Ports Open

	Example Code & Header Files
	Visual Basic6
	C/C++

